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Two spatial correlation patterns, fixed-to-arbitrary and neighboring bin correlation patterns, are suggested. It
is demonstrated that these patterns present scale-independent and distinguishable measures for correlated and
uncorrelated random multiplicative cascade processes. Their application to very high multiplicity events in
relativistic heavy ion collisions is discussed.
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Correlations have been proven to be a powerful tool in
exploring the underlying dynamics of many complex sys-
tems. They relate directly to the interaction mechanism. For
example, the momentum correlation between identical par-
ticles gives a direct access to the spatial distribution of the
emitting sourcef1g, the power law behavior of the correla-
tion strength with diminishing correlation length implies a
self-similar multifractalf2,3g, and so on.

The simplest correlation case is two-bin correlation, de-
fined by f4g

CK1,K2
= kpK1

pK2
l − kpK1

lkpK2
l, s1d

whereK1 andK2 are the positions of two bins in the phase
space andpsKd is the probability in theKth bin. The average
is over all events in the sample. In the conventional investi-
gation of correlations, the measure is usually limited to the
relation between correlation strength and correlation length
with an additional average over all pairs of bins of the same
distance in the whole observed domainf2–4g. This average
proceduresusually referred to as a horizontal averagef5gd
obviously smooths out the space structure of the correlations.
This structure is sensitive to different underlying dynamics
and allows us to investigate a complex system on a deeper
level.

A straightforward space-position related correlation is the
three-dimensional correlation pattern, i.e.,CK1,K2

vs K1,K2.
However, the structure of this kind of three-dimensional pat-
tern is very complicated and the underlying dynamics is hard
to observe thereby; cf., Fig. 1 of Ref.f6g. A two-dimensional
or a projection of the three-dimensional pattern will be able
to show the fine structure much more clearly. There are num-
bers of way to construct a two-dimensional correlation pat-
tern. A good one should include as much information on
space correlations as possible and be simple as well.

In this Brief Report, we suggest two two-dimensional cor-
relation patterns, which contain important information on the
underlying dynamics. As an example, we demonstrate how
they can be used as indicators for correlated and uncorrelated
random multiplicative cascade processes. The possibility of
their application in very high multiplicity events of multipar-
ticle production is discussed at the end of the paper.

An important and interesting piece of information is the
change of correlation strength with space distance. It can be
obtained by fixing one binK1 and varying the other oneK2.
This is thefixed-to-arbitrarybin correlation pattern. It con-

tains correlation information at various lengths. Another im-
portant piece of information is how the neighboring bins are
correlated to each other, i.e., theneighboringbin correlation
pattern. In the following, we will show how these two pat-
terns provide us distinguishable information about correlated
and uncorrelated random multiplicative cascade processes.

A random multiplicative cascade processsRMCPd is the
simplest example of having a well-defined multifractal struc-
ture and has been used extensively in various fields. For
example, the fragmentation processes in turbulencef2,7g and
successive branching in the QCD parton showerf8g are both
this kind of process.

The main idea of such a process is simply a series of
self-similar random cascades in spatial partitions. It is gen-
erally described as follows. At the first step of the cascade, a
given initial interval with lengthD and unit probabilityp0
=1 is split intot subdivisionss“sub-bins”d. The probability
for each sub-bin in splitting is determined by a weightw
which is distributed according to asplitting function
psw1,w2, . . . ,wtd. Then each bin obtained from the first gen-
eration of the cascade is again independently split intot bins
and so on. The probability distribution for such a process
with t=2 is depicted in Table I.

After n=1,2, . . . ,J generations, the final number of bins
is tn, and the probability in a specific binjn is a product ofn
w’s over all previous generations:pjn

n =w1j1
w2j2

¯wn jn
, where

jn=1,2, . . . ,tn. The distribution ofpjn
n obtained in this way

will fluctuate violently from bin to binscf. Fig. 6 in f2gd, and
has a well-defined multifractal structure.

For an uncorrelated RMCP, the splitting function can be
factorized as

psw1,w2, . . . ,wtd = psw1dpsw2d ¯ pswtd; s2d

therefore, the correlation between any two sub-bins in any
elementary splitting is zero. At the first step,CK1,K2

=0 for

TABLE I. The probability distribution of binary random cascade
processes with cascade generation down ton=2.

n=0 p0
0=1

n=1 p1
1=p0

0w11 p2
1=p0

0w12

n=2 p1
2=p1

1w21 p2
2=p1

1w22 p3
2=p2

1w23 p4
2=p2

1w24
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any K1,K2. At the last step,CK1,K2
=0 if and only if the two

binsK1 andK2 in Eq. s1d are separated at the very beginning,
i.e., atn=1. In the fixed-to-arbitrary bin correlation pattern,
these two bins areK1=1 and K2=tn−1+1,tn−1+2, . . . ,tn;
while they areK1=tn−1 andK2=tn−1+1 in a neighboring bin
correlation pattern. On the contrary, two other bins, having a
common ancestor atn.0, will have a nonvanishing correla-
tion. The strongest correlations are between those two bins
split at the last step of the cascade. Hence the smallest cor-
relation in this kind of process is zero.

On the other hand, the splitting function cannot be factor-
ized as Eq.s2d for a correlated RMCP and the correlations in
any elementary splitting will not vanish, being above zero
for a positively correlated RMCP and below zero for a nega-
tively correlated one.

Therefore, the basic difference between correlated and un-
correlated RMCPs can be clearly observed by the above-
suggested two correlation patterns. This conclusion is obvi-
ously splitting-numberstd and scalesD /tnd independent.

The above arguments can be shown analytically for con-
crete models if we take the logarithm of the probability in-
stead of the probability itself in Eq.s1d f6g. It can be simply
written as

CK1,K2
= kln pK1

ln pK2
l − kln pK1

lkln pK2
l

= AsJ − dd + Bs1 − dd,0d, s3d

where d=J−o j=1
J dK1

1,K2
1¯dK1

j ,K2
j is the ultrametric distance,

which is a measure of how many generations one has to
move up before a common ancestor is found for two given
bins K1 andK2;

A = U ]2Qfl1,l2g
]l1

2 U
l=0

, B = U ]2Qfl1,l2g
]l1]l2

U
l=0

s4d

are respectively the so-called “same-lineage” cumulant,
which is the correlation of the common ancestor ofK1 and
K2, and the “splitting” cumulant, which measures the corre-
lation between the two parts split first from their common
ancestor; and

Qfl1,l2g = lnFE dw1dw2psw1,w2desl1 ln w1+l2 ln w2dG s5d

is the branching generating functionsBGFd.
There is a class of uncorrelated RMCP models, such as

the famousa model f9g with splitting functionf6g

pasw1,w2d =
1

4
fd„w1 − s1 + ad… + d„w1 − s1 − ad…g

3fd„w2 − s1 + ad… + d„w2 − s1 − ad…g, s6d

wherea is a fixed parameter in the regionf−1,1g. The split-
ting function of this kind of model can also be parametrized
by the binomial, lognormal, or Beta distribution for each
weight w f10g.

The simplest correlation in random cascade processes
comes from the constraint on probability or energy conser-
vation in each splitting step. The well-knownp modelf11g is
one of this kind of process. Its splitting functionf6g is

psw1,w2d =
1

2
fd„w1 − s1 + bd… + d„w1 − s1 − bd…g

3dsw1 + w2 − 2d, s7d

whereb is a fixed parameter in the regionf−1,1g and prob-
ability conservationw1+w2=2 holds in every splitting. An-
other example of this kind of model is thec model f12g,
where thew’s are random number distributed inf0, 1g with
w1=s1+grd /2 andw2=s1−grd /2, r is a random number in
the interval f−1,1g, and g is the parameter of fluctuation
strength, 0øgø1. Obviously, this model is more flexible
and closer to a real system with probability conservation. Its
splitting function can be written as

psw1,w2d =
1

g
FuSw1 −

1 − g

2
D − uSw1 −

1 + g

2
DG

3dsw1 + w2 − 1d. s8d

For these three models, by simply inserting their splitting
functions into Eq.s5d and then into Eq.s4d, their correspond-
ing “same-lineage” and “splitting” cumulants become

Aa =
1

4
Fln

1 + a

1 − a
G2

, Ba = 0, s9d

Ap =
1

4
Fln

1 + b

1 − b
G2

, Bp = −
1

4
Fln

1 + b

1 − b
G2

, s10d

Ac =
1

g
E

s1−gd/2

s1+gd/2

sln w1d2dw1 −
1

g2FE
s1−gd/2

s1+gd/2

ln w1dw1G2

,

Bc =
1

g
E

s1−gd/2

s1+gd/2

ln w1 lns1 − w1ddw1

−
1

g2FE
s1−gd/2

s1+gd/2

ln w1dw1G2

, s11d

respectively.
For a, p, and c models, we depict the fixed-to-arbitrary

and neighboring bin correlation patterns in Figs. 1sad and
1sbd, respectively, with the parametersa=0.4, b=0.4, g
=0.8, J=6.

The significant differences among these three models are
the values of the smallest correlation strength and the one
above it. As shown in the figure, the smallest correlation in
thea model is zero. In thep model, the correlation spectrum
ranges over positive, zero, and negative values, while for the
c model, only positive and negative correlations appear with-
out a zero value.

The smallest correlation strength is equal to the value ofB
at d=J in Eq. s3d and the one above it isA+B at J−d=1. The
vanishing of B in the a model is caused by independent
splitting, while the negativeB for bothp andc models means
a negative correlation between the two parts of the elemen-
tary splitting, which is due to the constraint of probability
conservation in each splitting. The zero correlation strength
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at J−d=1 in thep model impliesAp=−Bp. This happens to
be the case when there is only one mode for possible values
of weight factorsw in the splitting function, i.e.,w1=1±b
and w2=17b. These correspondence relations are valid no
matter how many generations the real cascade process is.

So all the observable differences in the patterns come
from the different model assumptions. Whether the smallest
correlation strength in the suggested two patterns is zero or
nonzero provides a scale-independent indication of whether
the underlying random multiplicative cascade processes is
uncorrelated or correlated. For negatively correlated pro-
cesses, the correlation strength above the smallest one will
be zerosor nonzerod as long as the splitting mode is unique
sor nonuniqued.

In applying the model to multiparticle dynamics, a prob-
lem is whether the probability in a small phase space bin can
be approximately estimated by

pK > nK/N, s12d

wherenK is the number of particles falling into theKth bin
and N is the total number of particles in the event. This
equation holds exactly if and only ifN→`. In current rela-
tivistic heavy ion experimentssat the RHICd f17g the multi-
plicity of a single event has reached 104 f18g, and Eq.s13d
should be approximately applicable.

In order to show this quantitatively, we choose the above-
mentionedc model to do the simulation. The dynamical
probabilities p1,p2, . . . ,pM in the M =2J=64 bins are first
generated by the model and shown in Fig. 2 as open circles.
Then N=104 particles are put into theM =64 bins by Ber-
noulli distribution. From the simulatednK, the practically
measuredpK is calculated by Eq.s13d. Finally, the fixed-to-
arbitrary bin correlation pattern is calculated by Eq.s3d and
shown in Fig. 2sad by solid circles. From the figure, we can
see that the solid circles already give a regular pattern similar
to that of the open ones. The results forN=105 are depicted
in Fig. 2sbd, where the solid circles just fall into the open
ones, showing that the original pattern is well reproduced. So
the suggested measures can be safely applied to high multi-
plicity events in future heavy ion experiments, such as LHC-
ALICE, and are therefore highly recommended.

If a quark-gluon plasmasQGPd is formed in a relativistic
heavy ion collision, the correlation between final state par-
ticles is expected to extend to a larger space and the corre-
lation strength is greatly suppressed in comparison with
those processes without a QGP. In contrast to the correlation
pattern of thec model, or existing models for nuclear colli-
sions without the QGP, the resulting correlation pattern will
not develop so rapidly with the distance between two bins
and will tend to be less dependent on the position of the bins.
The suggested correlation patterns just provide a possible
identification for those different dynamical evolutions.

In the conventional measures of correlation at a certain
correlation length in multiparticle production, a horizontal
average over all pairs of bins with the same distance has
been taken, e.g., the momentum correlation between identi-
cal particlesf13g and the balance functionsf14g, the correla-
tions at different spatial positions are neglected, and so the
information contained in neightboring bin correlation pat-
tern, i.e., Fig. 1sbd, is lost. The suggested two correlation
patterns not only keep this information, but also offer a gen-
eral measure for it in contrast to the specific position-related
correlations used in multiparticle dynamics, such as the
forward-backward correlationf15g, the correlation between
two rapidity windows separated by a specific rapidity gap
f16g, and so on. Moreover, it is unnecessary to keep the bin
size diminishing until it is very small, as is required by

FIG. 1. sad The fixed-to-
arbitrary bin correlation patterns
C1,K2

and sbd the neighboring bin
correlation patternsCK,K+1, of the
a, p, and c models. The solids
lines in the figures indicate zero
correlation strength.

FIG. 2. The fixed-to-arbitrary bin correlation patternsC1,K2
,

where the open circles are generated by thec model, the same as
those in the third columns of Figs. 1sad and 1sbd, and the solid
circles are the results of thec model with finite multiplicity fluc-
tuationssad N=104, sbd N=105.
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the anomalous scaling analysis of the correlated factorial
momentsf3g.

In summary, two reduced spatial correlation patterns for
two-point correlations are suggested. They are sensitive to
the underlying mechanism and work equally well in distin-
guishing correlated and uncorrelated RMCPs as well as in
identifying the unique and nonunique splitting modes in
negatively correlated RMCPs. The possibility of their appli-
cation to multiparticle production is discussed.

We can also find similar reduced spatial correlation pat-
terns in more-than-two-point correlations. Measurements for
all of them will be useful in exploring the underlying dynam-
ics of complex system.
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