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Two correlation patterns as indicators for underlying dynamics of complex systems
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Two spatial correlation patterns, fixed-to-arbitrary and neighboring bin correlation patterns, are suggested. It
is demonstrated that these patterns present scale-independent and distinguishable measures for correlated and
uncorrelated random multiplicative cascade processes. Their application to very high multiplicity events in
relativistic heavy ion collisions is discussed.
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Correlations have been proven to be a powerful tool intains correlation information at various lengths. Another im-
exploring the underlying dynamics of many complex sys-portant piece of information is how the neighboring bins are
tems. They relate directly to the interaction mechanism. Focorrelated to each other, i.e., theighboringbin correlation
example, the momentum correlation between identical parpattern. In the following, we will show how these two pat-
ticles gives a direct access to the spatial distribution of theerns provide us distinguishable information about correlated
emitting sourcd 1], the power law behavior of the correla- and uncorrelated random multiplicative cascade processes.
tion strength with diminishing correlation length implies a A random multiplicative cascade proce$$MCP) is the

self-similar multifractal[2,3], and so on. simplest example of having a well-defined multifractal struc-
The simplest correlation case is two-bin correlation, deture and has been used extensively in various fields. For
fined by[4] example, the fragmentation processes in turbul¢®cé and
successive branching in the QCD parton shoj@mare both
Ci, K, = (P, Pry) = (P P, (1) this kind of process.

The main idea of such a process is simply a series of
whereK; andK; are the positions of two bins in the phase self-similar random cascades in spatial partitions. It is gen-
space ang(K) is the probability in the<th bin. The average erally described as follows. At the first step of the cascade, a
is over all events in the sample. In the conventional investigiven initial interval with lengthA and unit probabilityp,
gation of correlations, the measure is usually limited to the=1 is split into 7 subdivisions(“sub-bins”. The probability
relation between correlation strength and correlation lengtior each sub-bin in splitting is determined by a weigit
with an additional average over all pairs of bins of the samevhich is distributed according to @plitting function
distance in the whole observed dom@®+-4|. This average p(w;,w,, ... ,w,). Then each bin obtained from the first gen-
procedure(usually referred to as a horizontal averd@8)  eration of the cascade is again independently split frtins
obviously smooths out the space structure of the correlationgind so on. The probability distribution for such a process
This structure is sensitive to different underlying dynamicswith =2 is depicted in Table I.

and allows us to investigate a complex system on a deeper After »=1,2,...,) generations, the final number of bins

level. is 7%, and the probability in a specific bijr is a product ofv
A straightforward space-position related correlation is they’s over all previous generationg) =wy; Wy; ---W,; , where
. . . . v 1 2 v
three-dimensional correlation pattern, i.€y , vs Ky, Ka. j,=1,2,... 7. The distribution ofp} obtained in this way

However, the structure of this kind of three-dimensional pat-
tern is very complicated gnd the underlying dy_namic_s is harq, 55 4 well-defined multifractal structure.

to observe thereby; cf., Fig. 1 of R¢6]. A two-dimensional For an uncorrelated RMCP, the splitting function can be
or a projection of the three-dimensional pattern will be ablefactorized as

to show the fine structure much more clearly. There are num-

bers of way to construct a two-dimensional correlation pat- P(Wg,Wa, ... W,) = p(Wy)p(Wy) - -~ p(W,); 2

tern. A good one should include as much information Ony,q efore; the correlation between any two sub-bins in any

space qorrglatlons as possible and be S|mp|_e as vyell. elementary splitting is zero. At the first ste@x_x. =0 for
In this Brief Report, we suggest two two-dimensional cor- h2

relation patterns, which contain important information on the TABLE I. The probability distribution of binary random cascade
underlying dynamics. As an example, we demonstrate hovegrocesses with cascade generation down=@.

they can be used as indicators for correlated and uncorrelated
random multiplicative cascade processes. The possibility of
their application in very high multiplicity events of multipar-
ticle production is discussed at the end of the paper.

An important and interesting piece of information is the v=1 P1=PoWig P3=PW12
change of correlation strength with space distance. It can be
obtained by fixing one biK; and varying the other oni€,. V=2
This is thefixed-to-arbitrarybin correlation pattern. It con-

ill fluctuate violently from bin to bin(cf. Fig. 6 in[2]), and

v=0 p8=1

2_ 1 2_ 1 2_ 1 2__ 1
P1=p1Wa1 P3=p1Wa2 P3=p3Wa3 P1=PaW24
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any K;,K,. At the last stepCy, «,=0 if and only if the two 1

binsK; andK, in Eq. (1) are separated at the very beginning, P(Wy, W) = 5[5(""1 —(1+p)+dw = (1-p))]

i.e., atv=1. In the fixed-to-arbitrary bin correlation pattern,

these two bins ar&;=1 and K,=7"1+1,771+2, ... ™ X oWy +Wp = 2), (7)

while they areK,=7""1 andK,=7"1+1 in a neighboring bin . . .
correlation pattern. On the contrary, two other bins, having a\l/vhere,B is a fixed parameter in the regignl, 1] and prob-

_ er . ) o . " )
common ancestor at> 0, will have a nonvanishing correla- ability conservationw, +w,=2 holds in every splitting. An

: : . ather example of this kind of model is the model [12],
tion. The strongest correlations are between those two bmghere thew's are random number distributed 0. 1] with

split at the last step of the cascade. Hence the smallest cof- . .
relation in this kind of process is zero. Wy =(1+91)/2 andw,=(1-9r)/2, r is a random number in

On the other hand, the splitting function cannot be factor{"€ intérval[-1,1], and y is the parameter of fluctuation

ized as Eq(2) for a correlated RMCP and the correlations in Stréngth, 6 y=<1. Obviously, this model is more flexible
any elementary splitting will not vanish, being above Zeroanq g:loser toa real system with probability conservation. Its
for a positively correlated RMCP and below zero for a negaSPlitting function can be written as
tively correlated one. 1 1- 1+

Therefore, the basic difference between correlated and un- p(Wq,W5) = —[ 0<w1— —7) - 0(w1— 7)}
correlated RMCPs can be clearly observed by the above- Y 2 2
suggested two correlation patterns. This conclusion is obvi- X S(Wy + W, — 1), (8)
ously splitting-number7) and scalgA/7") independent.

The above arguments can be shown analytically for con- For these three models, by simply inserting their splitting
crete models if we take the logarithm of the probability in- functions into Eq(5) and then into Eq(4), their correspond-
stead of the probability itself in Eq1) [6]. It can be simply N9 “same-lineage” and “splitting” cumulants become

written as 2
A :l[mlm] B,=0 9)
C, .k, = {IN Py, In'py,) = <IN pie XN pie ) “ 4l 1-a) YT
=AJ-d)+B(1-640), 3
; - o _1[ 1+BT _ 1[ 1+Br
where d=J-2_6k1 k1~ &ki ki is the ultrametric distance, A,=—|In , Bp=—~|In——|, (10
o 172 172 . 4 1-p8 4 1-8

which is a measure of how many generations one has to

move up before a common ancestor is found for two given (2 A )

binsK, andKy; A.= Ef (In wy)%dwy, - llf In WldW1] ,

PQN 1\ PQN 1\ 4 Y-z 4 (1-vr2
A2 |0 NNz | ym0 S

are respectively the so-called “same-lineage” cumulant, B.=— f Inw; IN(1 —wy)dwy

which is the correlation of the common ancestorkgfand YJa-yr2

K,, and the “splitting” cumulant, which measures the corre- 1 (1+y)/2 2

lation between the two parts split first from their common - ?[f In WldW1] : (11)

ancestor; and (1-y)/2
respectively.

QA1) = an dw; dwop(wy, wp)ehe It vtz In WZ)} (5) For a, p, andc models, we depict the fixed-to-arbitrary

and neighboring bin correlation patterns in Fig$a)land

is the branching generating functioBGF). 1(b), respectively, with the parameters=0.4, 3=0.4, v

There is a class of uncorrelated RMCP models, such as0.8,J=6.

the famousa model[9] with splitting function[6] The significant differences among these three models are

the values of the smallest correlation strength and the one
Do (Wy,Wy) = }[5(\,\,1_ (1+a))+dw, - (1-a)] above it. As shown in the figure, the smallest correlation in
4 the @ model is zero. In thg model, the correlation spectrum

X[8(Wy = (1 + @) + Wy — (1 - )], (6) ranges over posit!v_e, zero, and r_legative va_lues, while for_the
¢ model, only positive and negative correlations appear with-
wherea is a fixed parameter in the regi¢pnl, 1]. The split-  out a zero value.
ting function of this kind of model can also be parametrized The smallest correlation strength is equal to the valu@ of
by the binomial, lognormal, or Beta distribution for each atd=Jin Eqg.(3) and the one above it &+B atJ-d=1. The
weightw [10]. vanishing ofB in the a model is caused by independent
The simplest correlation in random cascade processesplitting, while the negativ& for bothp andc models means

comes from the constraint on probability or energy consera negative correlation between the two parts of the elemen-
vation in each splitting step. The well-knovygmodel[11]is  tary splitting, which is due to the constraint of probability
one of this kind of process. Its splitting functi¢] is conservation in each splitting. The zero correlation strength
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1.4} a—model | p—model - ¢—model 14 ae—model | p—model | ¢—model
1.2F a a 1.2F a a
1.0 - - 1.0F F R )
. FIG. 1. (@ The fixed-to-
o 08F 3 F i O8E e, 3 ] arbitrary bin correlation patterns
G 06} o s § 06F S s Cik, and(b) the neighboring bin
04k P b 04k P b correlation pattern€y k.1, of the
- - - I S ) a, p, and ¢ models. The solids
02p — E b 0.2¢ - R lines in the figures indicate zero
0 — 0 : : correlation strength.
—02F} . — —0.2[ . : .
0 2 50 0 2 500 2 50 0 2 500 2 500 25 50
() Ky (b) K
atJ-d=1 in thep model impliesA,=-B,,. This happens to If a quark-gluon plasm&QGP is formed in a relativistic

be the case when there is only one mode for possible valudseavy ion collision, the correlation between final state par-
of weight factorsw in the splitting function, i.e.w;=1+8 ticles is expected to extend to a larger space and the corre-
andw,=1% B. These correspondence relations are valid ndation strength is greatly suppressed in comparison with
matter how many generations the real cascade process is.those processes without a QGP. In contrast to the correlation
So all the observable differences in the patterns comeattern of thec model, or existing models for nuclear colli-
from the different model assumptions. Whether the smallesgions without the QGP, the resulting correlation pattern will
correlation strength in the suggested two patterns is zero afot develop so rapidly with the distance between two bins
nonzero provides a scale-independent indication of whethesnd will tend to be less dependent on the position of the bins.
the underlying random multiplicative cascade processes i$he suggested correlation patterns just provide a possible
uncorrelated or correlated. For negatively correlated proidentification for those different dynamical evolutions.
cesses, the correlation strength above the smallest one will In the conventional measures of correlation at a certain
be zero(or nonzerg as long as the splitting mode is unique correlation length in multiparticle production, a horizontal
(or nonunique average over all pairs of bins with the same distance has
In applying the model to multiparticle dynamics, a prob- been taken, e.g., the momentum correlation between identi-
lem is whether the probability in a small phase space bin cagal particled13] and the balance functioi$4], the correla-
be approximately estimated by tions at different spatial positions are neglected, and so the
information contained in neightboring bin correlation pat-
tern, i.e., Fig. 1b), is lost. The suggested two correlation
Pk = /N, (120  patterns not only keep this information, but also offer a gen-
eral measure for it in contrast to the specific position-related
correlations used in multiparticle dynamics, such as the

whereny is the number of particles falling into tHéth bin ~ forward-backward correlatiofl5], the correlation between
and N is the total number of particles in the event. Thistwo rapidity windows separated by a specific rapidity gap
equation holds exactly if and only M—c. In current rela- [16], and so on. Moreover, it is unnecessary to keep the bin
tivistic heavy ion experiment&t the RHIQ [17] the multi-  Size diminishing until it is very small, as is required by
plicity of a single event has reached*1a8], and Eq.(13)
should be approximately applicable.

In order to show this quantitatively, we choose the above-
mentionedc model to do the simulation. The dynamical 15
probabilities p;,ps, ... ,py in the M=2’=64 bins are first
generated by the model and shown in Fig. 2 as open circles
Then N=10" particles are put into th1=64 bins by Ber- 5 0.5
noulli distribution. From the simulatedy, the practically 0
measuredy is calculated by Eq(13). Finally, the fixed-to-
arbitrary bin correlation pattern is calculated by E8). and
shown in Fig. 2a) by solid circles. From the figure, we can -1 B Lo L 1
see that the solid circles already give a regular pattern simila 0 40 60
to that of the open ones. The results fox 10 are depicted :

in Fig. 2(b), where the solid circles just fall into the open  FiG. 2. The fixed-to-arbitrary bin correlation patters .,
ones, showing that the original pattern is well reproduced. SQhere the open circles are generated byditeodel, the same as
the suggested measures can be safely applied to high multhose in the third columns of Figs(d and ib), and the solid
plicity events in future heavy ion experiments, such as LHC-ircles are the results of the model with finite multiplicity fluc-
ALICE, and are therefore highly recommended. tuations(a) N=10% (b) N=10CP.
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the anomalous scaling analysis of the correlated factorial We can also find similar reduced spatial correlation pat-
momentg 3]. terns in more-than-two-point correlations. Measurements for
In summary, two reduced spatial correlation patterns forall of them will be useful in exploring the underlying dynam-

two-point correlations are suggested. They are sensitive t@s of complex system.

the underlying mechanism and work equally well in distin-

guishing correlated and uncorrelated RMCPs as well as in We are grateful for the good suggestions of Dr. Nu Xu
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